# ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ

# ХАБАРШЫСЫ

# **ВЕСТНИК**

НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН

# THE BULLETIN

OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

1944 ЖЫЛДАН ШЫҒА БАСТАҒАН ИЗДАЕТСЯ С 1944 ГОДА PUBLISHED SINCE 1944



## Бас редакторы

### х. ғ. д., проф., ҚР ҰҒА академигі

# М. Ж. Жұрынов

### Редакция алқасы:

Абиев Р.Ш. проф. (Ресей)

Абишев М.Е. проф., корр.-мүшесі (Қазақстан)

Аврамов К.В. проф. (Украина)

Аппель Юрген проф. (Германия)

Баймуқанов Д.А. проф., корр.-мүшесі (Қазақстан)

Байпақов К.М. проф., академик (Қазақстан)

Байтулин И.О. проф., академик (Қазақстан)

Банас Иозеф проф. (Польша)

Берсимбаев Р.И. проф., академик (Қазақстан)

Велихов Е.П. проф., РҒА академигі (Ресей)

Гашимзаде Ф. проф., академик (Әзірбайжан)

Гончарук В.В. проф., академик (Украина)

Давлетов А.Е. проф., корр.-мүшесі (Қазақстан)

**Джрбашян Р.Т.** проф., академик (Армения)

Қалимолдаев М.Н. проф., корр.-мүшесі (Қазақстан), бас ред. орынбасары

Лаверов Н.П. проф., академик РАН (Россия)

Лупашку Ф. проф., корр.-мүшесі (Молдова)

Мохд Хасан Селамат проф. (Малайзия)

Мырхалықов Ж.У. проф., корр.-мүшесі (Қазақстан)

Новак Изабелла проф. (Польша)

Огарь Н.П. проф., корр.-мүшесі (Қазақстан)

Полещук О.Х. проф. (Ресей)

Поняев А.И. проф. (Ресей)

Сагиян А.С. проф., академик (Армения)

Сатубалдин С.С. проф., академик (Қазақстан)

Таткеева Г.Г. проф., корр.-мүшесі (Қазақстан)

Умбетаев И. проф., корр.-мүшесі (Қазақстан)

Хрипунов Г.С. проф. (Украина)

Якубова М.М. проф., академик (Тәжікстан)

## «Қазақстан Республикасы Ұлттық ғылым академиясының Хабаршысы».

ISSN 2518-1467 (Online), ISSN 1991-3494 (Print)

Меншіктенуші: «Қазақстан Республикасының Ұлттық ғылым академиясы»РҚБ (Алматы қ.)

Қазақстан республикасының Мәдениет пен ақпарат министрлігінің Ақпарат және мұрағат комитетінде 01.06.2006 ж. берілген №5551-Ж мерзімдік басылым тіркеуіне қойылу туралы куәлік

Мерзімділігі: жылына 6 рет.

Тиражы: 2000 дана.

Редакцияның мекенжайы: 050010, Алматы қ., Шевченко көш., 28, 219 бөл., 220, тел.: 272-13-19, 272-13-18, www: nauka-nanrk.kz, bulletin-science.kz

© Қазақстан Республикасының Ұлттық ғылым академиясы, 2016

Типографияның мекенжайы: «Аруна» ЖК, Алматы қ., Муратбаева көш., 75.

## Главный редактор

### д. х. н., проф. академик НАН РК

## М. Ж. Журинов

## Редакционная коллегия:

Абиев Р.Ш. проф. (Россия)

Абишев М.Е. проф., член-корр. (Казахстан)

Аврамов К.В. проф. (Украина)

Аппель Юрген проф. (Германия)

Баймуканов Д.А. проф., чл.-корр. (Казахстан)

Байпаков К.М. проф., академик (Казахстан)

Байтулин И.О. проф., академик (Казахстан)

Банас Иозеф проф. (Польша)

Берсимбаев Р.И. проф., академик (Казахстан)

Велихов Е.П. проф., академик РАН (Россия)

Гашимзаде Ф. проф., академик (Азербайджан)

Гончарук В.В. проф., академик (Украина)

Давлетов А.Е. проф., чл.-корр. (Казахстан)

Джрбашян Р.Т. проф., академик (Армения)

Калимолдаев М.Н. проф., чл.-корр. (Казахстан), зам. гл. ред.

Лаверов Н.П. проф., академик РАН (Россия)

Лупашку Ф. проф., чл.-корр. (Молдова)

Мохд Хасан Селамат проф. (Малайзия)

Мырхалыков Ж.У. проф., чл.-корр. (Казахстан)

Новак Изабелла проф. (Польша)

Огарь Н.П. проф., чл.-корр. (Казахстан)

Полещук О.Х. проф. (Россия)

Поняев А.И. проф. (Россия)

Сагиян А.С. проф., академик (Армения)

Сатубалдин С.С. проф., академик (Казахстан)

Таткеева Г.Г. проф., чл.-корр. (Казахстан)

Умбетаев И. проф., чл.-корр. (Казахстан)

Хрипунов Г.С. проф. (Украина)

Якубова М.М. проф., академик (Таджикистан)

#### «Вестник Национальной академии наук Республики Казахстан».

ISSN 2518-1467 (Online), ISSN 1991-3494 (Print)

Собственник: РОО «Национальная академия наук Республики Казахстан» (г. Алматы)

Свидетельство о постановке на учет периодического печатного издания в Комитете информации и архивов Министерства культуры и информации Республики Казахстан №5551-Ж, выданное 01.06.2006 г.

Периодичность: 6 раз в год Тираж: 2000 экземпляров

Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28, ком. 219, 220, тел. 272-13-19, 272-13-18.

www: nauka-nanrk.kz, bulletin-science.kz

© Национальная академия наук Республики Казахстан, 2016

#### Editor in chief

### doctor of chemistry, professor, academician of NAS RK

#### M. Zh. Zhurinov

#### Editorial board:

**Abiyev R.Sh.** prof. (Russia)

**Abishev M.Ye.** prof., corr. member. (Kazakhstan)

Avramov K.V. prof. (Ukraine)

**Appel Jurgen,** prof. (Germany)

Baimukanov D.A. prof., corr. member. (Kazakhstan)

**Baipakov K.M.** prof., academician (Kazakhstan)

Baitullin I.O. prof., academician (Kazakhstan)

Joseph Banas, prof. (Poland)

Bersimbayev R.I. prof., academician (Kazakhstan)

Velikhov Ye.P. prof., academician of RAS (Russia)

**Gashimzade F.** prof., academician ( Azerbaijan)

Goncharuk V.V. prof., academician (Ukraine)

Davletov A.Ye. prof., corr. member. (Kazakhstan)

**Dzhrbashian R.T.** prof., academician (Armenia)

Kalimoldayev M.N. prof., corr. member. (Kazakhstan), deputy editor in chief

Laverov N.P. prof., academician of RAS (Russia)

Lupashku F. prof., corr. member. (Moldova)

Mohd Hassan Selamat, prof. (Malaysia)

Myrkhalykov Zh.U. prof., corr. member. (Kazakhstan)

Nowak Isabella, prof. (Poland)

Ogar N.P. prof., corr. member. (Kazakhstan)

Poleshchuk O.Kh. prof. (Russia)

Ponyaev A.I. prof. (Russia)

Sagiyan A.S. prof., academician (Armenia)

Satubaldin S.S. prof., academician (Kazakhstan)

Tatkeyeva G.G. prof., corr. member. (Kazakhstan)

**Umbetayev I.** prof., corr. member. (Kazakhstan)

Khripunov G.S. prof. (Ukraine)

Yakubova M.M. prof., academician (Tadjikistan)

### Bulletin of the National Academy of Sciences of the Republic of Kazakhstan.

ISSN 2518-1467 (Online),

ISSN 1991-3494 (Print)

Owner: RPA "National Academy of Sciences of the Republic of Kazakhstan" (Almaty)

The certificate of registration of a periodic printed publication in the Committee of Information and Archives of the Ministry of Culture and Information of the Republic of Kazakhstan N 5551-W, issued 01.06.2006

Periodicity: 6 times a year Circulation: 2000 copies

Editorial address: 28, Shevchenko str., of. 219, 220, Almaty, 050010, tel. 272-13-19, 272-13-18,

http://nauka-nanrk.kz/, http://bulletin-science.kz

© National Academy of Sciences of the Republic of Kazakhstan, 2016

Address of printing house: ST "Aruna", 75, Muratbayev str, Almaty

— 4 —

# **BULLETIN** OF NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN ISSN 1991-3494

Volume 5, Number 363 (2016), 85 – 92

# M. Z. Bitimbayev<sup>1</sup>, V. S. Shemyakin<sup>2</sup>, S. V. Skopov<sup>2</sup>

<sup>1</sup>"Kazakhmys Corporation" LLP, JSC "MMC "Kazakhaltyn", <sup>2</sup>JSC "Scientific-Production Company "Technogen", Ekaterinburg, Russia. E-mail: mbitimbayev@mail.ru, shemiyakin@mail.ru, sws54@mail.ru

# FEASIBILITY STUDY FOR PRE-ENRICHMENT OF COPPER AND COPPER ZINC ORES OF KAZAKHSTAN

**Abstract.** Necessity to implement the ore sorting systems based on X-ray radiometric separation on copper and copper-zinc ores deposits in Kazakhstan is caused by several factors such as decline in the quality of extracted raw materials and significant remoteness of a number of mines from the obage fabric. The developed and proposed pre-enrichment technology includes the operation of crushing, screening and separation machine size fractions extracted from the original ore. X-ray radiometric enrichment technology, which is proposed to be used in ore sorting complex, has proved its efficiency in the processing of various types of ores, including copper and copper-zinc.

As an example, proving a high efficiency of X-ray radiometric separation for copper ore enrichment, we reviewed a version of feasibility study of the investments expediency to ore sorting complex construction with processing capacity  $\sim 1.5$  mln. tones of ore per year.

In carrying out the feasibility study, it was determined that with a processing capacity of 1.5 mln. tones of ore per year the total number of administrative staff and site workers at the ore sorting complex is 69 people. Construction of the complex requires relatively low capital costs  $\sim$  6.3 mln. US dollars, and ore processing has a very low cost  $\sim$  2.21 US dollars of ore per one ton of the original ore. The payback period of capital investment to the ore sorting complex construction does not exceed  $\sim$  2 years. In determining the effectiveness of implementation the technology of X-ray radiometric copper ore enrichment the additional savings had not been taken into account, obtained by increasing the extraction of copper and other valuable components (eg gold and silver) into flotation concentrate on the obage fabric, due to increase of their content in the original ore on the ore sorting complex by X-ray radiometric separation.

**Keywords:** ore sorting complex, feasibility study, copper and copper zinc ore, technology, radiometric enrichment, efficiency.

УДК 622.725

# М. Ж. Битимбаев<sup>1</sup>, В.С. Шемякин<sup>2</sup>, С. В. Скопов <sup>2</sup>

<sup>1</sup>ТОО «Корпорация Казахмыс», Казахстан, <sup>2</sup>ЗАО «НПК «Техноген», Екатеринбург, Россия

# ОБОСНОВАНИЕ ЦЕЛЕСООБРАЗНОСТИ ПРЕДВАРИТЕЛЬНОГО ОБОГАЩЕНИЯ МЕДНЫХ И МЕДНО-ЦИНКОВЫХ РУД КАЗАХСТАНА

**Аннотация.** Необходимость внедрения рудосортировочноых комплексов на базе рентгенорадиометрической сепарации на месторождениях медных и медно-цинковых руд Казахстана обусловлена рядом факторов, таких как снижение качества добываемого сырья и значительной удалённостью ряда рудников от обогатительных фабрик. Разработанная и предлагаемая технология предварительного обогащения включает в себя операции дробления, грохочения и сепарации машинных классов крупности, выделенных из исходной руды. Технология рентгенорадиометрического обогащения, которую предлагается использовать в рудосортировочном комплексе, доказала свою эффективность при переработке различных типов руд, в том числе медных и медно-цинковых.

В качестве примера, доказывающего достаточно высокую эффективность применения рентгенорадиометрической сепарации для обогащения медных руд, нами рассмотрен вариант технико-экономического обоснования целесообразности инвестиций в строительство рудосортировочного комплекса с объемом переработки  $\sim 1,5$  млн. тонн руды в год.

При выполнении технико-экономического обоснования было определено, что общая численность административно-управленческого персонала и рабочих участка рудосортировочного комплекса на объем переработки 1,5 млн т руды в год, составляет 69 человек. Строительство комплекса требует относительно небольших капитальных затрат  $\sim 6,3$  млн. долларов США, а переработка руды имеет весьма низкую себестоимость  $\sim 2,21$  доллара США на одну тонну руды исходной руды. Срок окупаемости капитальных вложений в строительство рудосортировочного комплекса не превышает  $\sim 2$  лет. При определении эффективности внедрения технологии рентгенорадиометрического обогащения медной руды, не была учтена дополнительная экономия, получаемая за счет повышение извлечения меди и других ценных компонентов (например, золота и серебра) во флотационный концентрат на обогатительной фабрике, в связи с повышением их содержания в исходной руде на рудосортировочнном комплексе методом рентгенорадиометрической сепарации.

**Ключевые слова:** рудосортировочный комплекс, технико-экономическое обоснование, медная и медно-цинковая руда, технология, радиометрическое обогащение, эффективность.

Добыча медных и медьсодержащих руд ведется почти в 50 странах [1]. В Казахстане из девяти десятков известных медных и медно-цинковых месторождений разрабатывается более половины [2, 3]. Оцененные мощности горнорудных предприятий по производству рудничной меди составляют ~ 725 тысяч тонн. Крупнейшие продуценты меди в концентратах — это ТОО «Корпорация Казахмыс» [4], на долю которой приходиться примерно 80-85 % казахстанского производства, и ТОО «Казцинк», которое выпускает медь в качестве попутной продукции (9-10%). По данным ТОО «Корпорация Казахмыс» в меднорудном производстве компании участвуют 20 рудников и 10 обогатительных фабрик, расположенных в четырех регионах Казахстана.

Подземные рудники «Южный», «Степной», «Восточный», «Западный», «Анненский», «Жомарт» и открытый рудник «Северный» отрабатывают крупное месторождение медных песчаников Жезказганского рудного района. Подземный рудник «Жомарт» отрабатывает месторождение медных руд «Жаман-Айбат». Руды перерабатываются на трех обогатительных фабриках Жезказганского региона, после чего концентраты с содержанием меди 25-39 % поступают на металлургический завод в г. Жезказган и в г. Балхаш.

В Балхашский комплекс (ПО «Карагандацветмет») входят подземные рудник «Шатыркуль» и «Саяк», а также открытый рудник «Коунрад». Рудник «Шатыркуль» отрабатывает жильное кварцсульфидное месторождение со средним содержанием меди в добываемых рудах ~ 2-2,5 %, рудник «Саяк» отрабатывает медно-магнетитовые и сульфидные типы медных руд скарново-гидротермального типа со средним содержанием меди в добываемых рудах ~ 0,6-0,8 %. Руды обогащаются на Балхашской обогатительной фабрике, а концентраты перерабатываются на металлургическом заводе в г. Балхаш.

В Восточном регионе добыча ведется подземными рудниками ПО «Востокцветмет» на медноцинковых колчеданных месторождениях «Артемовское», «Орловское», «Белоусовское», «Иртышское», «Юбилейно-Снегирихинское» и «Николаевское», руды которых перерабатываются на обогатительных фабриках, удаленных на достаточное расстояние друг от друга. Поскольку аналитики Intierra Resource Intelligence предположили, что на рынке рафинированной меди в 2015-2016 годах будет наблюдаться заметный избыток, то цены на медь снизятся до 4,5-5,0 тысяч долларов за тонну.

Необходимость внедрения рудосортировочноых комплексов на базе рентгенорадиометрической сепарации на месторождениях медных и медно-цинковых руд Казахстана обусловлена рядом факторов, таких как снижение качества добываемого сырья и значительной удалённостью ряда рудников от обогатительных фабрик.

По своей сути стандартный рудосортировочный комплекс [5] состоит из 2-х основных узлов (узел дробления и грохочения, а также участок сепарации – узел РРС), связанных между собой транспортными линиями подачи и отвода исходной руды и продуктов обогащения (конвейерами). Функционально все узлы рудосортировочного комплекса предназначены для решения главной задачи – подготовки и обогащения крупнокусковых фракций медной или медно-цинковой сульфидной руды, поступившей на рентгенорадиометрическую сепарацию.

Технология предварительного обогащения медной или медно-цинковой руды различных месторождений Казахстана принимается на основании ранее выполненных исследований и опытно-промышленных испытаний [6,7].

Разработанная и предлагаемая технология предварительного обогащения включает в себя операции дробления, грохочения и сепарации машинных классов крупности, выделенных из исходной руды.

В соответствии с разработанной технологической схемой исходная медная или медно-цинковая руда транспортируется из шахты или карьера автосамосвалами и разгружается на площадку рядом с приемным бункером. Затем исходная руда фронтальным погрузчиком загружается в приемный бункер вибрационного (или пластинчатого) питателя. Питателем руда подается на колосниковый грохот, с которого класс крупностью более 300 мм загружается в щековую дробилку крупного дробления. Дробленый продукт щековой дробилки крупностью менее 300 мм самотеком разгружается на ленточный конвейер, куда поступает также подрешетный продукт колосникового грохота, и транспортируется на грохот вибрационный грохот тяжелого типа, оборудованный просеивающими поверхностями с размером отверстий 150 и 30(20) мм. После грохочения класс крупности -30(20) мм ленточным конвейером транспортируется в склад. Классы крупности -300+150 и -150+30(20) мм ленточными конвейерами транспортируются в корпус рентгенорадиометрической сепарации. Поступившие машинные классы крупности -300+150 и -150+30(20) мм в корпус сепарации, разгружаются на реверсивные конвейеры, которые затем распределяют материал в приемные бункера сепараторов.

Из бункеров машинный класс крупности -300+150 мм поступает в рентгенорадиометрические сепараторы СРФ3-300, а класс крупности -150+30(20) мм – в рентгенорадиометрические сепараторы СРФ4-150. Разгрузка материала из бункеров в рентгенорадиометрические сепараторы осуществляется с помощью встроенных в сепараторы вибрационных питателей. Концентрат рентгенорадиометрических сепараторов разгружается на ленточный конвейер и транспортируется в склад. Хвосты рентгенорадиометрических сепараторов разгружаются на другой ленточный конвейер, который их перемещает в противоположном, по отношению к концентрату, направлении. Они также поступают в склад. Отгрузка продуктов из складов осуществляется фронтальным погрузчиком.

Стандартная схема цепи аппаратов рудосортировочного комплекса представлена на рисунке 1. Технология рентгенорадиометрического обогащения, которую предлагается использовать в посортировочном комплексе доказала свою эффективность при переработке различных типов

рудосортировочном комплексе, доказала свою эффективность при переработке различных типов руд, в том числе медных и медно-цинковых [8,9]. Примерами использования таких технологий являются предприятия Уральской горно-металлургической компании (ОАО «Гайский ГОК», ОАО «Учалинский ГОК» и ОАО «Святогор»).

Предлагаемые к использованию рентгенофлуоресцентные (СРФ) сепараторы зарекомендовали себя как надёжное и эффективное технологическое оборудование. Применительно к медным и медно-цинковым рудам Казахстана технологическая эффективность рентгенорадиометрической сепарации была доказана предварительными исследованиями, тестовыми и опытно-промышленными испытаниями, проведёнными ЗАО «НПК «ТЕХНОГЕН» на рудах различных месторождений ТОО «Корпорация Казахмыс».

В качестве примера, доказывающего достаточно высокую эффективность применения рентгенорадиометрической сепарации для обогащения медных руд, нами рассмотрен вариант технико-экономического обоснования целесообразности инвестиций в строительство рудосортировочного комплекса с объемом переработки ~ 1,5 млн т руды в год.

Реализация технологии рентгенорадиометрического обогащения позволяет:

- расширить сырьевую базу медной промышленности Республика Казахстан;
- сократить транспортные расходы на перевозку медной руды от рудника до обогатительной фабрики;
  - повысить содержание меди в перерабатываемой руде на фабрике;
  - уменьшить затраты на переработку медной руды на обогатительной фабрике.

Выбор площадки рудосортировочного комплекса производился исходя из необходимости максимально приблизить его к месту добычи руды, обеспечения надежности транспортирования

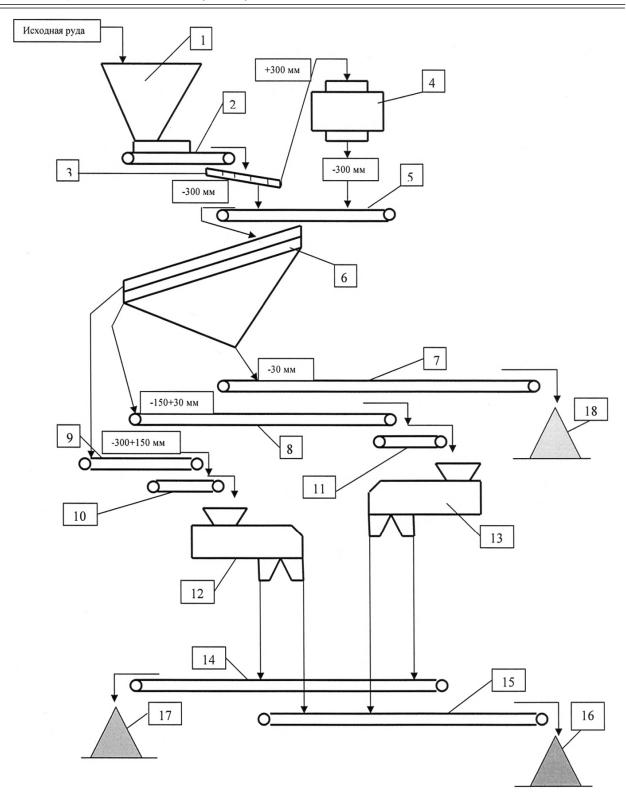
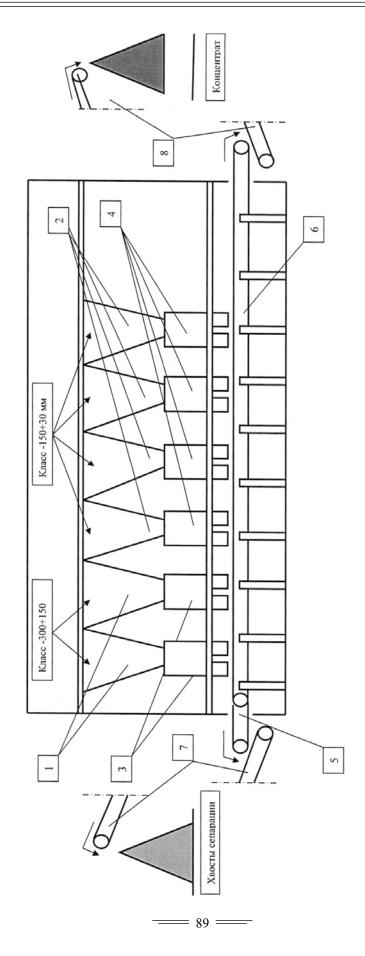




Рисунок 1 — Схема цепи аппаратов рудосортировочного комплекса: 1 — приемный бункер; 2 — питатель; 3 — колосник; 4 — дробилка крупного дробления; 5 — ленточный конвейер ЛК-1; 6 — агрегат с виброгрохотом; 7 — ленточный конвейер ЛК-2, 8 — ленточный конвейер ЛК-3; 9 — ленточный конвейер ЛК-4; 10 — реверсивный конвейер ЛК-5; 11 — реверсивный конвейер ЛК-6; 12 — сепаратор СРФ3-300; 13 — сепаратор СРФ4-150; 14 — ленточный конвейер ЛК-7; 15 — ленточный конвейер ЛК-8; 16 — хвосты сепарации; 17 — концентрат сепарации; 18 — класс крупностью -30 мм



3 – рентгенорадиометрические сепараторы СРФ3-300; 4 – рентгенорадиометрические сепараторы СРФ4-150; 5 – горизонтальный конвейер хвостов сепарации; 6 – горизонтальный конвейер концентрата сепарации; 7 – наклонный конвейер хвостов сепарации; 8 – наклонный конвейер концентрата сепарации 1 – приемные бункера машинного класса крупностью -300+150 мм; 2 – приемные бункера машинного класса крупностью -150+30 мм; Рисунок 2 — Стандартный корпус рентгенорадиометрической сепарация на объем переработки 600 тыс. т исходной руды в год:

исходной руды и продуктов обогащения, возможности организации бесперебойного энергоснабжения, ритмичность и надежность эксплуатации участка и др. Необходима площадь под строительство комплекса составляет около  $\sim 3.5$  га.

Размещение объектов рудосортировочного комплекса было принято с учетом технологических решений объектов основного и вспомогательного назначений, а также обеспечения кратчайших транспортно-технологических и коммуникационных связей между ними. На открытой площадке комплекса размещается технологическое (конвейера, дробилка, питатель) и сантехническое оборудование. Здание корпуса сепарации двухпролетное, разновысотное, выполняется из металлического каркаса, что позволяет подобрать оптимальный вариант габаритов здания. При разработке технико-экономического обоснования были проработаны все вопросы инженерной системы рудосортировочного комплекса: электроснабжение, силовое электрооборудование и элетроосвещение, автоматизация, промышленная связь, отопление и вентиляция, водоснабжение, водоотведение и канализация.

При реализации данного проекта используется сухая экологически чистая технология. В этом случае снижается количество складируемых мокрых флотационных хвостов за счёт размещения крупнокусковых сухих хвостов на территории промплощадки рудника.

При технико-экономических расчетах была принята схема поэтапного ввода производственных мощностей рудосортировочного комплекса:

- на первом этапе осуществляется строительство рудосортировочного комплекса на объем переработки ~ 600 тысяч тонн исходной руды (рисунок 2);
- на втором этапе производится расширение рудосортировочного комплекса под суммарный объем переработки  $\sim 1\,500$  тыс. т исходной руды.

Как показывают расчеты капитальных затрат, на первом этапе для приобретения оборудования и строительство рудосортировочного комплекса потребуется около ~ 3,3 млн долларов США. При увеличении производительности комплекса до 1,5 млн т медной руды в год, узел дробления и грохочения изменению не подлежит, но дополнительно потребуется приобретение шести сепараторов СРФ4-150 и трех сепараторов СРФ2-300, а также одного автосамосвала. Кроме того, необходимо выполнить строительные работы по расширению корпуса сепарации и увеличить длину ленточных конвейеров, транспортирующих концентрат и хвосты сепарации на площадку складирования. Суммарные дополнительные затраты на втором этапе составят ~ 3,0 млн. долларов США.

При выполнении технико-экономического обоснования было определено, что общая численность административно-управленческого персонала и рабочих участка рудосортировочного комплекса на объем переработки 1,5 млн т руды в год, составляет 69 человек. Строительство комплекса требует относительно небольших капитальных затрат  $\sim 6,3$  млн долларов США, а переработка руды имеет весьма низкую себестоимость  $\sim 2,21$  доллара США на одну тонну руды исходной руды (таблица). Срок окупаемости капитальных вложений в строительство рудосортировочного комплекса не превышает  $\sim 2$  лет.

| ~ ~        | ~               |               |                     |             |
|------------|-----------------|---------------|---------------------|-------------|
| Герестоима | ACTL ODOFAIHEUL | и мепили пупы | на рупосортировонно | м комплексе |

| Cross a compos                      | Затраты, долларов США           |                                |  |
|-------------------------------------|---------------------------------|--------------------------------|--|
| Статьи затрат                       | На объем переработки 600 тыс. т | На объем переработки 1,5 млн т |  |
| Заработная плата и социальные нужды | 458 160                         | 718 950                        |  |
| Отчисления на охрану труда          | 31 370                          | 49 230                         |  |
| Амортизация                         | 212 660                         | 407 190                        |  |
| Текущий ремонт                      | 438 470                         | 839 570                        |  |
| Электроэнергия                      | 190 040                         | 380 090                        |  |
| Расход материалов на погрузчик      | 423 570                         | 847 140                        |  |
| Транспорт хвостов                   | 34 920                          | 69 840                         |  |
| Итого                               | 1 789 190                       | 3 312 010                      |  |
| На 1 тонну сырой руды               | 2,98                            | 2,21                           |  |

При определении эффективности внедрения технологии рентгенорадиометрического обогащения медной руды не была учтена дополнительная экономия, возникающая как за счет снижения передельных затрат на обогатительной фабрике, которая в настоящее время не может быть определена без проведения дополнительного анализа и расчетов, так и за счет уменьшения капитальных затрат либо на расширение действующей обогатительной фабрики, либо на строительство новой фабрики.

Кроме того, при выполнении технико-экономических расчетов не учитывалось повышение извлечения меди и других ценных компонентов (например, золота и серебра) во флотационный концентрат на обогатительной фабрике, в связи с повышением их содержания в исходной руде на рудосортировочнном комплексе методом рентгенорадиометрической сепарации.

Хвосты рентгенорадиометрического обогащения могут быть рекомендованы для использования в качестве инертного заполнителя при изготовлении закладочной смеси, что может значительно удешевить стоимость добычи с закладкой выработанного пространства шахт.

Социальная целесообразность инвестиций состоит в создании новых рабочих мест, а также в повышении квалификации рабочих и инженерно-технических работников. Помимо традиционного оборудования, применяемого на горно-обогатительных предприятиях, на рудосортировочном комплекс, используется наукоемкая технология на основе нового оборудования — рентгенорадиометрических сепараторов, отличающихся высоким и современным техническим уровнем.

#### ЛИТЕРАТУРА

- [1] Беспаев Х.А. Атлас моделей месторождений полезных ископаемых / Х.А. Беспаев, Л.А. Мирошниченко. Алматы: Наука, 2004. 135 с.
- [2] Кулкашев Н.Т. О генетической классификации месторождений полезных ископаемых / Н.Т. Кулкашев, А.Б. Байбатша // Сатпаевские чтения: Проблемы геологии и минерагении развития минерально-сырьевых ресурсов. Алматы, 2010. С. 192-198.
- [3] Авдонин В.В. Поиски и разведка месторождений полезных ископаемых: Учебник для вузов / В.В. Авдонин, Г.В. Ручкин, Н.Н. Шатагин, Т.И. Лыгина, М.Е. Мельников . М.: Фонд «Мир», 2007. 540 с.
- [4] Корнилков С.В. Формирование высокотехнологичных энерго- и ресурсосберегающих горно-обогатительных производств для поддержания сырьевой базы республики Казахстан / С.В. Корнилков, И.В. Соколов, В.С. Шемякин, С.Ж. Галиев // Мат-лы научно-техн. конф. «Инновационные технологии обогащения минерального и техногенного сырья», проводимой в рамках V Уральского горнопромышленного форума, 1–3 октября 2013 г. Екатеринбург: Изд-во УГГУ, 2013. С. 60-72.
- [5] Шемякин В.С. Рудосортировочные комплексы по обогащению минерального сырья и техногенных образований / В.С. Шемякин, С.В. Скопов, Ю.О. Федоров // Труды научно-практ. конф. с международным участием и элементами школы молодых ученых «Перспективы развития металлургии и машиностроения с использованием завершенных фундаментальных исследований и НИОКР». Екатеринбург, 2013. С. 75-80.
- [6] Шемякин В.С. Теория и практика рентгенорадиометрического обогащения: научная монография / В.С. Шемякин, Е.Ф. Цыпин, Ю.О. Федоров и др. Екатеринбург: Изд-во «Форт Диалог-Исеть», 2013. 253 с.
- [7] Шемякин В.С. Обогащение медных и медно-цинковых руд Казахстана методом рентгенорадиометрической сепарации / Современные тенденции в области теории и практики добычи и переработки минерального и техногенного сырья / В.С. Шемякин, С.В. Скопов, Р.В. Маньковский // Сборник материалов. Междунар. научно-практ. конф. Т. 1. Екатеринбург: Изд-во УМЦ УПИ, 2014. С. 171-179.
- [8] Скопов С.В. Обоснование целесообразности строительства рудосортировочного комплекса на базе рентгенорадиометрической сепарации / С.В. Скопов, В.С. Шемякин, И.Г. Степанов // «Научные основы и практика переработки руд и техногенного сырья»: Мат-лы XX Междунар. научно-техн. конф., 15–16 апреля 2015 г. Екатеринбург: Изд-во «Форт Диалог-Исеть», 2015. С. 11-15.
- [9] Скопов С.В. Обоснование целесообразности применения рентгенорадиометрической сепарации для обогащения медно-цинковых руд / С.В. Скопов, И.Г. Степанов, В.С. Шемякин // Мат-лы научно-техн. конф. «Инновационные технологии обогащения минерального и техногенного сырья», проводимой в рамках V Уральского горнопромышленного форума, 1–3 октября 2013 г. Екатеринбург: Изд-во УГГУ, 2013. С. 297-304.

#### REFERENCES

- [1] Bespaev H.A. Atlas modelej mestorozhdenij poleznyh iskopaemyh / H.A. Bespaev, L.A. Miroshnichenko. Almaty: Nauka, 2004. 135p.
- [2] Kulkashev N.T. O geneticheskoj klassifikacii mestorozhdenij poleznyh iskopaemyh / N.T. Kulkashev, A.B. Bajbatsha // Satpaevskie chtenija: Problemy geologii i mineragenii razvitija mineral'no-syr'evyh resursov. Almaty, 2010. P. 192-198.
- [3] Avdonin V.V. Poiski i razvedka mestorozhdenij poleznyh iskopaemyh: Uchebnik dlja vuzov / V.V. Avdonin, G.V. Ruchkin, N.N. Shatagin, T.I. Lygina, M.E. Mel'nikov M.: Fond «Mir», 2007. 540 p.

- [4] Kornilkov S.V. Formirovanie vysokotehnologichnyh jenergo- i resursosberegajushhih gorno-obogatitel'nyh proizvodstv dlja podderzhanija syr'evoj bazy respubliki Kazahstan / S.V. Kornilkov, I.V. Sokolov, V.S. Shemjakin, S.Zh. Galiev. Materialy nauchno-tehnicheskoj konferencii «Innovacionnye tehnologii obogashhenija mineral'nogo i tehnogennogo syr'ja», provodimoj v ramkah V Ural'skogo gornopromyshlennogo foruma, 1-3 oktjabrja 2013 g. Ekaterinburg: Izd-vo UGGU, 2013. P. 60-72.
- [5] Shemjakin V.S. Rudosortirovochnye kompleksy po obogashheniju mineral'nogo syr'ja i tehnogennyh obrazovanij / V.S.Shemjakin, S.V.Skopov, Ju.O.Fedorov. Trudy nauchno-prakticheskoj konferencii s mezhdunarodnym uchastiem i jelementami shkoly molodyh uchenyh «Perspektivy razvitija metallurgii i mashinostroenija s ispol'zovaniem zavershennyh fundamental'nyh issledovanij i NIOKR». Ekaterinburg. 2013. P. 75-80.
- [6] Shemjakin V.S. Teorija i praktika rentgenoradiometricheskogo obogashhenija: nauchnaja monografija / V.S. Shemjakin, E.F. Cypin, Ju.O. Fedorov i dr. Ekaterinburg: Izd-vo «Fort Dialog-Iset"», 2013. 253 p.
- [7] Shemjakin V.S. Obogashhenie mednyh i medno-cinkovyh rud Kazahstana metodom rentgenoradiometricheskoj separacii / Sovremennye tendencii v oblasti teorii i praktiki dobychi i pererabotki mineral'nogo i tehnogennogo syr'ja / V.S.Shemjakin, S.V.Skopov, R.V.Man'kovskij // Sbornik materialov. Mezhdunarodnaja nauchno-prakticheskaja konferencija. Vol. 1. Ekaterinburg: Izd-vo UMC UPI, 2014. P. 171-179.
- [8] Skopov S.V. Obosnovanie celesoobraznosti stroitel'stva rudosortirovochnogo kompleksa na baze rentgenoradiometricheskoj separacii / S.V.Skopov, V.S.Shemjakin, I.G.Stepanov Nauchnye osnovy i praktika pererabotki rud i tehnogennogo syr'ja. Materialy HH Mezhdunarodnoj nauchno-tehnicheskoj konferencii 15-16 aprelja 2015 g. Ekaterinburg: Izd-vo «Fort Dialog-Iset'», 2015. P. 11-15.
- [9] Skopov S.V. Obosnovanie celesoobraznosti primenenija rentgenoradiometricheskoj separacii dlja obogashhenija medno-cinkovyh rud / S.V.Skopov, I.G.Stepanov, V.S.Shemjakin Materialy nauchno-tehnicheskoj konferencii «Innovacionnye tehnologii obogashhenija mineral'nogo i tehnogennogo syr'ja», provodimoj v ramkah V Ural'skogo gornopromyshlennogo foruma, 1-3 oktjabrja 2013 g. Ekaterinburg: Izd-vo UGGU, 2013. P. 297-304.

# М. Ж.Бітімбаев<sup>1</sup>, В. С. Шемякин<sup>2</sup>, С. В. Скопов<sup>2</sup>

<sup>1</sup>ТОО «Корпорация Казахмыс», Казахстан, <sup>2</sup>ЗАО «НПК «Техноген», Екатеринбург, Россия

## ҚАЗАҚСТАННЫҢ МЫС ЖӘНЕ МЫС-МЫРЫШТЫ КЕНІНІҢ АЛДЫН-АЛА БАЙЫТЫЛУЫНЫҢ ОРЫНДЫЛЫҒЫН НЕГІЗДЕУ

**Аннотация.** Қазақстанның мыс және мыс-мырышты кен орнында рентгенорадиометриялық негізінде кен іріктеудің кешенін құрудың негізі мынадай бірнеше фактормен байланысты, алынған шикізаттың сапасының төмендеуі және байыту фабрикаларынан кен орындарының қашықтығы. Алдын-ала байытудағы дайындалған және ұсынылып отырған технология өзіне шыққан кеннен бөлінген бірнеше операцияларды біріктіреді ұсату, грохочения және ірі классты кенді машиналық сепрациялау. Кен іріктеу кешенінде қолдануға ұсынылып отырған Рентгенорадиометриялық байыту технологиясы әр-түрлі кенді қайта өңдегенде өзінің тиімділігін дәлелдеді, оның ішінде мыс және мыс-мырышты кенде.

Мысал ретінде мыс кеннін байытқанда, рентгенорадиометриялық сепарацияны қолданғанда, бізбен жылына – 1,5 млн т кенді өңдегенде технико-экономикалық негіздеменің мақсаттылығы кен іріктеу кешенін салуда инвестицияның маңыздылығы қарастырылды. Технико-экономикалық негіздеу кезінде, әкімшілік-басқару қызметкерлерінің барлық есебі және кен іріктеу кешенінің жұмысшылары жылына – 1,5 млн т кенді өңдеудегі есебе 69 адам болады. Кешеннің құрылысы 6,3 млн доллар АҚШ көлемінде аз мөлшердегі капиталды шығынды қажет етеді, ал кенді өңдеудің өзіндік құны бір тонна шығатын кенге – 2,21 АҚШ долларын құрайды. Рентгенорадиометриялық кен іріктеу кешеніннің өзіндік ақталу құны 2 жылдан аспайды. Мысты кенді рентгенорадиометриялық байытудағы технологияны енгізу кезінде, қосымша үнемдеу есептелген жоқ, мысты алу кезіндегі және басқа құнды компоненттердің (мысалы алтын мен күміс) байыту фабрикаларындағы флотациялық концентрат, шығатын кеннен, кен іріктеу кешенінде рентгенорадиометриялық тәсілмен сепарациялануын.

**Түйін сөздер:** кен іріктеу кешені, технико-экономикалық негіздеме, мыс және мыс-мырышты кен, технология, радиометриялық байыту, тиімділік.

#### Сведения об авторах:

Битимбаев М. Ж. – Эксперт ТОО «Корпорация Казахмыс», член Совета директоров АО «ГМК «Казахалтын», доктор технических наук, профессор. E-mail: mbitimbayev@mail.ru

Шемякин В. С. – Генеральный директор ЗАО «Научно-производственная компания «Техноген», г. Екатеринбург, доктор технических наук, профессор. E-mail: shemiyakin@mail.ru

Скопов С. В. – Исполнительный директор 3AO «Научно-производственная компания «Техноген», г. Екатеринбург, кандидат технических наук. E-mail: sws54@mail.ru

# Publication Ethics and Publication Malpractice in the journals of the National Academy of Sciences of the Republic of Kazakhstan

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the National Academy of Sciences of the Republic of Kazakhstan implies that the described work has not been published previously (except in the form of an abstract or as part of a academic published lecture thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The National Academy of Sciences of the Republic of Kazakhstan follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (<a href="http://publicationethics.org/files/u2/New\_Code.pdf">http://publicationethics.org/files/u2/New\_Code.pdf</a>). To verify originality, your article may be checked by the Cross Check originality detection service <a href="http://www.elsevier.com/editors/plagdetect">http://www.elsevier.com/editors/plagdetect</a>.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the National Academy of Sciences of the Republic of Kazakhstan.

The Editorial Board of the National Academy of Sciences of the Republic of Kazakhstan will monitor and safeguard publishing ethics.

Правила оформления статьи для публикации в журнале смотреть на сайте:

www:nauka-nanrk.kz ISSN 2518-1467 (Online), ISSN 1991-3494 (Print)

http://www.bulletin-science.kz/index.php/ru/

Редакторы М. С. Ахметова, Д. С. Аленов, Т. М. Апендиев Верстка на компьютере Д. Н. Калкабековой

Подписано в печать 11.10.2016. Формат 60х881/8. Бумага офсетная. Печать – ризограф. 17,9 п.л. Тираж 2000. Заказ 5.